機械学習

機械学習スキルを上達させるには?Kaggleを使うのがおすすめの理由

機械学習の勉強をしたいが上達方法が分からない、という方は多いかと思います。
プログラミングの文法やアルゴリズムの勉強方法は分かるけれども、機械学習の勉強というと、何から始めるべきか難しいですよね。

そこで本記事では、機械学習の上達方法について解説します。どんなステップで機械学習を学べばよいのか、詳しく解説しますね。

また、機械学習の勉強を行う上でおすすめのKaggleについても紹介しましょう。Kaggleを使うことで、本格的な機械学習スキルが身につきます。

本記事を読むことで、機械学習スキルを上達させることが可能です。将来AIエンジニアやデータサイエンティストを目指す方は、ぜひ本記事を参考にしてくださいね。


本ブログを運営しているTech Teacherは、業界初のプログラミング家庭教師サービスを提供しています。

その特徴は完全マンツーマン・フルオーダーメイド指導・30分ごとの利用が可能であるところです。

完全マンツーマン

一般的なプログラミングスクールの録画講義や対面講義では内容をうまく理解できないまま先に内容が進んでしまうことがあります。Tech Teacherのマンツーマン指導なら理解できない箇所は何度も分かるまで説明を受けることができます。

フルオーダーメイド指導

Tech Teacherではあらかじめ決められたカリキュラムはありません。そのためご自身の学習状況や学びたいことに合わせた指導が可能です。

一括支払いなし

一般的なプログラミングスクールの料金体制はカリキュラムに対して一括払いですが、Tech Teacherでは利用した分だけの支払いとなります。そのため、大きな費用負担がなく気軽に始めることができます。

データサイエンスをマンツーマン指導で学べるプログラミング家庭教師について詳しく知りたい方ほこちら

機械学習上達のステップ

機械学習スキルを上達させる基本的なステップを紹介します。

  • step1.プログラミング言語の文法を覚える
  • step2.機械学習に必要な基礎知識を得る
  • step3.ライブラリの使い方を学ぶ
  • step4.機械学習の参考書を購入する
  • step5.機械学習を活用したWebサービスを作る

これら5つのステップに従って学習を進めるのがおすすめです。プログラミングは基礎からじっくり学ぶことが肝心。焦らずに1つ1つできることを増やしていきましょう

それでは1つ1つのステップについて詳しく解説していきます。

step1.プログラミング言語の文法を覚える

まずはプログラミング言語の文法を覚えましょう
機械学習において使える言語は、PythonやR言語などです。R言語は機械学習に特化した言語で、初心者にはややハードルが高いので、Pythonがおすすめです。

Pythonは文法も平易な上に、ソースコードが読みやすいので、初心者でも理解しやすいでしょう。まずはPythonの基礎文法を習得します。

入出力やループ処理、条件分岐など、1つ1つの文法を参考書や解説サイトを参考に覚えておきましょう。

step2.機械学習に必要な基礎知識を得る

続いて、機械学習に必要な基礎知識を学びます。機械学習をやる場合、数学や統計の知識が必要です。たとえば微分積分、線形代数、行列、ベクトル、などいったもの。

理系の大学に行っていない人は、こういったことを1から勉強するのは、少し難しいかもしれません。まずは高校数学から復習するのがおすすめです。

加えて、機械学習の基礎知識についても身につけましょう。教師あり学習と教師なし学習の違いや、特徴量設計、ディープラーニングなどの概念を知りましょう。人工知能に関する本は数多く出版されているので、何冊か読んでみることが肝心です。

また、余裕があればMySQLなどのデータベースを操作する言語の知識や、AWSやAzureなどのクラウドインフラの知識も抑えておくと、よりスムーズに機械学習が学べます。

step3.ライブラリの使い方を学ぶ

次に機械学習のライブラリを学びましょう。Pythonでは、数多くのライブラリが用意されています。これらのライブラリを使うと、機械学習や統計解析が楽に行えるのです。

たとえば、数値計算用ライブラリの「Numpy」、データ分析ライブラリの「padas」、線形代数などの数値処理を行う「Scipy」、機械学習に関する様々な機能が備わっている「scikit-learn」などがあります。

機械学習に携わるなら、ライブラリの理解は必須と言えます。

step4.機械学習の参考書を購入する

ライブラリの使い方まで覚えたら、機械学習関連の参考書を購入し、本格的な事項を学んでいきましょう。ディープラーニングの方法など、自分が携わりたい分野を中心に勉強していきます。

ただし、機械学習の参考書の中には上級者向けのものも多いです。Amazonのレビューなどを参考に、初心者向けに分かりやすく解説されていたり、イラストや図が使われていて視覚的に理解できたりするものを選択しましょう。

step5.機械学習を活用したWebサービスを作る

最後に機械学習を活用したWebサービスを作っていきます。実際にアプリを作ることで、自分に足りないスキルなどが分かってくるでしょう。

Webサービスはそこまで複雑なものでなくて問題ありません。とりあえず1つ完成させることが大切です。完成させてからブラッシュアップしていくようにしましょう。

Kaggleで機械学習を上達させよう

ここまで機械学習の上達方法を解説しました。どんなstepで学習を進めていくべきか、お分かり頂けたでしょうか?

さらに機械学習の理解を深めたい方は、「Kaggle」というサイトを使うのが良いです。
Kaggleがどんなサイトなのか、詳しく紹介しましょう。

Kaggleとは

Kaggleとは、機械学習に携わっている人が、機械学習のモデリング力を競い合うプラットフォームのことです。Kaggleを使うことで、自分の機械学習スキルがどの程度のレベルか、知ることが可能です。

Kaggleの利用者のことは、俗に「カグラー」とも呼ばれています。現在世界には40万人のもカグラーがいますね。ベテランのエンジニアも多くいますし、日本人も結構います。

また、KaggleはIT企業がAIエンジニアを探す場所としても使われています
Kaggleで活動することで、機械学習エンジニアやデータサイエンティストになる道が開かれるかもしれません。

Kaggleの目玉は、「コンペ」が多く開催されていることです。
コンペとは企業が出した課題をみんなで解き、高い分析モデルを作れるか競い合うというものです。優秀すると開発した分析モデルを企業に売り、かわりに賞金をもらうことができます。

Kaggleにはたとえば、「タイタニックの死者数を分析するアルゴリズム」や「メルカリでの販売者に対する最適価格提案アルゴリズム」などのコンペがありますね。

コンペの参加は誰でも無料で可能ですが、ベテランエンジニアも参戦するため、初心者はまず勝てません。
コンペに参加する場合はまず、各コンペの概要とデータの内容を理解しないといけないです。どんなデータがあってどのように使うべきか把握するだけでも、初心者苦労するでしょう。

ただKaggleには、初心者に対する救済措置として「カーネル」という機能が用意されています。カーネルとは、各コンペで他のユーザーが作成したコードのことです。公開されたコードは、自由に使うことができます。中には、コードの内容について、親切に説明しているものもありますね。

カーネルを自分なりに完了し、コンペクリアを狙うのが、最初の内の常套手段と言えます。また、コンペに挑戦しなくても、カーネルのソースを読むだけでも、十分勉強になりますよ。

また、Kaggleには「ディスカッション」という部屋もあります
ここでは、世界中のエンジニアとコミュニケーションが取れます。機械学習のトレンドなどについて情報を得られるので、ここも活用するのがおすすめです。

このようにKaggleは、AIエンジニアやデータサイエンティストのための就業場所と言えます。

Kaggleでメダル取得を狙おう

Kaggleのコンペで上位にランクインすると、メダルが貰えます。メダルは銅、銀、金の三種類があります。まずは銅メダル獲得を目指しましょう。

何位でメダルを貰えるかは、参加者の数によって変動します。
また、コンペだけでなく、カーネルでもメダルを獲得可能です。カーネルにソースを公開し、みんなから称賛を得られると、メダルを獲得できることがあります。

また、ディスカッションでもメダルを貰えます。条件は、トピックスやコメントに対して賛同を多く得られることです。

Kaggleでメダルを取得すれば、転職時にも大きなアピールポイントなります。ぜひメダル獲得を目指してくださいね。また、メダルを獲得するには、次の3つが重要になります。

  • 半年以上はプログラミングの基礎を学ぶ
  • 意外と読解力が重要
  • 人気があるカーネルを参考にする

メダルを取るための学習方法1.半年以上はプログラミングの基礎を学ぶ

メダルを取るには、上位に入る必要があります。上位に入るには、プログラミングの基礎力が必要不可欠です。半年程度はプログラミングの基礎を学びましょう。

いきなりコンペに参加すると、周囲のレベルの高さに驚いて挫折する可能性があります。Kaggleはまだまだ続くサービスだと思うので、慌てず活用しましょう。

メダルを取るための学習方法2.意外と読解力が重要

メダルを取るには、意外と読解力が重要です。「OverView」をよく読み、何が問われているか、理解しましょう。

ただし、Kaggleの文章は全て英語となっています。英語が苦手な方は多少苦労するかもしれません。分からない単語を辞書で調べつつ、読み進めていきましょう。

Kaggleの問題は、「これまで人力で行っていた業務を、AIによって効率化させる」という趣旨のものが多いです。そのため、まずは業務内容を理解することを意識しましょう。

学習方法3.人気があるカーネルを参考にする

Kaggleは他の人が書いたソースが公開されています。カーネルをベースに手を加えるだけでも、結構高いスコアが取れることがあります。

特に他の人からの評価が高いカーネルを参考にしましょう。評価の高いカーネルは、解説が丁寧なことが多く、問題の理解にも役立ちます。

「Tech Teacherで!~家庭教師ならではの3つの魅力~」

本Blogを運営するプログラミング家庭教師Tech Teacherは以下のような疑問をすべて解決できるサービスです。

・データサイエンスをもっと学びたいが、値段が高いスクールに通うのは気が引ける

・目的別に短時間の利用ができるサービスがあったらいいな

比較対象 Tech Teacher プログラミングスクールA社
受講形態
生徒1人に教師1人
(対面またはオンライン)

生徒3~5人に教師1人
(少人数個別指導)
担当教師
自分で選んだ担任教師
×
講座で決められた教師
カリキュラム
生徒様に最適化された
オーダーメイド指導

全員同じ教材・カリキュラム
仕事・学業との両立
可能
×
不可能
メンター制度
担任教師が一貫して
質問・学習状況を管理

質問対応・学習管理の担当が異なる
料金
授業時間分だけ
(3,960円 / 30分~)
×
一括払い
(528,000円 / 3ヶ月)
初期費用
入会金
(22,000円)
×
料金一括払い
(528,000円)
シミュレーション
(3ヶ月90分の指導を週1で行う)

(164,500円)
×
(528,000円)

以下、Tech Teacherの3つの魅力を紹介します。

データサイエンスをマンツーマン指導で学べるプログラミング家庭教師について詳しく知りたい方ほこちら

1.効率的な学習スタイル

一人のためだけの指導~1対1の完全個別指導~

一般的なプログラミングスクールでは大人数の対面講義や、録画講義の視聴またはオンラインでの受講がメインです。そうなると学習しながら生じた疑問をすぐに聞くことができずに、先に進んでしまい内容をうまく理解できなかったり、作業がうまく進まなかったりします。

家庭教師であれば、マンツーマンのため自分の課題にだけ焦点を当てて指導を受けられるので、1回の授業を濃い時間にすることができます。

無駄のない学習~フルオーダーメイド~

Tech Teacherは一般的なプログラミングスクールと異なり、あらかじめ決められたコースやカリキュラム設定がありません。

一般的なプログラミングスクールのカリキュラムでは、自分が本当に学習したいことを学ぶのにいくつか他の講義を受けなければなりません

Tech Teacherでは生徒様の現状の習熟度・目的・期間に応じてお悩みにダイレクトに刺さる授業を展開し、最短で目標となるゴールを目指せます。

2.自分のペースに合わせて学習できる

必要な分だけ~従量課金モデル~

Tech Teacherでは、他にはない「短時間(30分ごと)」の利用が可能です!勉強していてちょっとわからないところ、プログラミング学習のモチベーション維持など様々な疑問や悩みを解決することができます。

授業を受けた分だけ後払いする料金体系(3,960円〜 / 30分)のため、必要な期間に必要な分だけ受講できます。

好きな時間で~相性のいい教師の紹介~

Tech Teacherではあらゆるニーズに対応できる教師陣がいるため、生徒様の希望条件に最適な教師を紹介します。

Tech Teacherを受講している方のほとんどが仕事をしている社会人の方です。TechTeacherの家庭教師なら受講日時や回数を、生徒様のご都合に合わせて柔軟に調整することができ、スキルだけでなく都合の良い時間で指導できる教師を選べます。

3.確実に身につく

挫折しない~担任教師の継続指導~

オンライン・オンデマンドの講義の視聴形態だと、学習に対するモチベーションの維持が課題となり、当初の予定よりも受講期間が伸びたり、挫折したりする恐れがあります。

Tech Teacherでは、担任教師が生徒と二人三脚で学習をするため、学習が大変なときも寄り添ったサポートを受けられます。

具体的には学習計画の管理や受講目的を明確にした上で中間目標を設定し、それに向けた学習の指導をすることでモチベーションの維持を図ります。

いつでも質問できる~チャットサポート(オプション)~

担当教師は授業の時間以外に、チャットサービスを利用して、自分で学習しているときに生じた疑問をすぐに質問して解決することができます。

データサイエンスをマンツーマン指導で学べるプログラミング家庭教師について詳しく知りたい方ほこちら

Tech Teacherへのお問い合わせ



質問のみのお問い合わせも受け付けております。

まとめ

本記事では、機械学習の上達方法について解説しました。
本格的に機械学習をやっていくなら、Kaggleを使うのがおすすめです。Kaggleのコンペに参加したり、カーネルを読み込んだりしていけば、自然とスキルがアップしますよ。

肝心なのは、楽しみながら機械学習を学ぶことです。Kaggleでメダルを目指せば、楽しみながら学習できます。

Kaggleは無料で利用可能なので、興味がある人はぜひ一度使ってみてくださいね